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Abstract Reconstructions of temperature and hydrology from lake sedimentary archives have made
fundamental contributions to our understanding of past, present, and future climate and help evaluate
general circulation models (GCMs). However, because paleoclimate observations are an indirect (proxy)
constraint on climatic variables, confounding effects of proxy processes complicate interpretations of these
archives. To circumvent these uncertainties inherent to paleoclimate data-model comparison, proxy system
models (PSMs) provide transfer functions between climate variables and the proxy. We here present a
new PSM for lacustrine sedimentary archives. The model simulates lake energy and water balance, sensors
including leaf wax 𝛿D and carbonate 𝛿18O, bioturbation, and compaction of sediment to lend insight toward
how these processes affect and potentially obfuscate the original climate signal. The final product integrates
existing and new models to yield a comprehensive, modular, adaptable, and publicly available PSM for lake
systems. Highlighting applications of the PSM, we forward model lake variables with GCM simulations of
the last glacial maximum and the modern. The simulations are evaluated with a focus on sensitivity of lake
surface temperature and mixing to climate forcing, using Lakes Tanganyika and Malawi as case studies. The
PSM highlights the importance of mixing on interpretations of air temperature reconstructions from lake
archives and demonstrates how changes in mixing depth alone may induce nonstationarity between in situ
lake and air temperatures. By placing GCM output in the same reference frame as lake paleoclimate archives,
we aim to improve interpretations of past changes in terrestrial temperatures and water cycling.

Plain Language Summary Paleoclimate data from lakes provide some of the richest records
of past changes in temperature and precipitation on Earth. Indeed, the wealth of data from and global
coverage of large lake systems makes these records a particularly apt target for testing the performance
of global climate models. However, comparing models to lake archives is nontrivial: the two data types
are starkly different, and a model is required to “translate” between them. This paper builds a framework
for modeling lakes that places climate model and paleoclimate proxy measurements in the same units by
accounting for all the ways in which the climate signal of interest (e.g., temperature) is modified by the lake
(e.g., the heat budget of the lake or sedimentation processes). By making more direct comparisons between
data and models, we hope to build connections between researchers working with climate models and
researchers who produce lake records of past climate. In general, our lake model helps the climate science
community interpret the drivers of past climate changes from lakes. These records from the past give us
context for how the climate system may respond to anthropogenic greenhouse gas forcing in the future.

1. Introduction

Lake sedimentary archives have yielded some of the most complete, time-continuous records of terrestrial cli-
mate changes and have provided fundamentally important observations of thermal and hydrological change
extending centuries to millennia into the past. Efforts to amass paleoclimate reconstructions from lake sedi-
ments have provided regionally coherent understanding of temperature variability and paleohydrology from
the last glacial maximum (LGM) to the present (c.f. Gasse, 2000; Harrison et al., 2016; Street-Perrott, 1994), and
these records serve as an important test bed for climate model simulations (e.g., Kutzbach & Street-Perrott,
1985; Loomis et al., 2017; Otto-Bliesner et al., 2014). Recently, considerable attention has been cast toward
data-model comparison, and in particular evaluating the ability of coupled general circulation models (GCMs)
to simulate the variability observed in proxy archives (e.g., Dee et al., 2017; Laepple & Huybers, 2014). Such
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work harbors implications for the limitations of climate model physics, in particular the ability of Intergov-
ernmental Panel on Climate Change (IPCC)-class GCMs to capture decadal to centennial variability of the
atmospheric and terrestrial water cycle in future climate simulations (IPCC, 2013, and references therein).

In general, making robust comparisons between complex, multivariate paleoclimate archives (including
lacustrine archives) and climate model simulations is not straightforward. Traditionally, paleoclimate recon-
struction techniques for lakes have employed empirical (and usually linear) calibrations between proxy
measurements and the climate variable of interest (e.g., Loomis et al., 2011, 2012; Powers et al., 2011, and many
others). This inverse modeling approach accounts for calibration uncertainties but incurs errors in assuming
stationarity of those calibrations and the linearity of the proxy’s response to climate forcing. There is thus a
growing need for new methods in data-model comparison that take into account the differences between
climate models, which generate climate fields such as temperature, precipitation, and wind speed, and pale-
oclimate archives, which may record a multivariate, seasonally biased, and biologically, geochemically, and
geologically influenced transformation of the input climate signal. Complementary to the inverse modeling
approach, forward models predict the proxy value from climate variables using a first-principles representa-
tion of how the proxy works. A forward model or proxy system model (PSM; Evans et al., 2013) incorporates
our understanding of the physical, chemical, geological, and biological processes that affect the paleocli-
mate archive we measure (Baker et al., 2012; Evans et al., 2013; Russon et al., 2013; Schmidt, 1999; Stoll
et al., 2012; Thompson et al., 2011; Wackerbarth et al., 2012; and see Dee et al., 2015, for a review). Gener-
ally, a paleoclimate archive’s encoding of climate forcing may manifest as a multivariate and nonlinear signal
(Dee et al., 2015).

PSMs for multiple proxy types have been published in recent years, particularly for high-resolution (e.g., tree
ring width) and water-isotope-based systems (ice cores, corals, tree cellulose, and speleothems; see Dee et al.,
2015; Evans et al., 2013, for a review). These models have proved their usefulness, facilitating studies which
expand understanding of the climate signals recorded by proxy data (Anchukaitis et al., 2006; Baker et al.,
2012; Stoll et al., 2012; Wackerbarth et al., 2012), partitioning the impacts of the proxy system itself on the
final measurement (Dee et al., 2015), and improving data-model comparison by placing models and paleocli-
mate observations in the same reference frame or in the same units (e.g., Russon et al., 2013; Steig et al., 2013;
Thompson et al., 2011). Further, PSMs have been implemented in paleoclimate data assimilation (Dee et al.,
2016; Steiger et al., 2014) and in tracking error contributions inherent to different proxy types (Dee et al., 2015).
However, to date, there has been little attempt to develop a full PSM for lake temperature and hydroclimate
proxies. Although many studies have developed forward models for sedimentary archives (e.g., Huybers &
Wunsch, 2004; Jones et al., 2016; Schmidt, 1999; Subin et al., 2012; Trauth, 1998), these models have primarily
focused on a single aspect of the system, for example, energy balance (Hostetler & Bartlein, 1990), sedimen-
tation, and compaction (Bahr et al., 2001; Huybers & Wunsch, 2004; Lou et al., 2000) or bioturbation (Trauth,
2013). Each of these models is coded in different programming languages, using different conventions, and
often is designed for a specific site or problem, and they are thus not readily adaptable for wider use. Stan-
dard frameworks for the design of these models are needed to encourage broader use in the paleoclimate
community.

To address this, we here describe the design and application of a new Lake Sedimentary Archive PSM to trans-
late climate model output and observations to lake temperature observations from proxy data. Our goal is to
provide a flexible, multifaceted lake model that can be adapted depending on the user’s research question.
The model is broadly applicable to a range of scientific questions in paleolimnology; for example, one can to
perform sensitivity tests for controls on lake surface temperature, mixing depth, and lake level. Previous work
has used components of the lake PSM to simulate lake level, indicative of changes in the hydrological cycle
(Hostetler, 2009; Hostetler & Benson, 1994; Li & Morrill, 2013; Lowry & Morrill, 2018); in this study, we focus on
how lake temperatures are encoded in a proxy measurement and the uncertainties imparted on that mea-
surement during sedimentation and bioturbation, for example. An important application of the new lake PSM
is its use in data-model comparison. Comparing lake temperature reconstructions to climate model output
helps highlight discrepancies in our understanding of both climate physics and proxy uncertainties. The lake
PSM further provides a point of contact between the climate modeling community and the lacustrine archive
community.

We apply the PSM to Lakes Tanganyika and Malawi, using time-slice experiments from the Paleoclimate Mod-
eling Intercomparison Project (PMIP3) to simulate lake temperature changes under different mean climate
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states. We use the PSM output to (1) evaluate the energy and mass transfers that drive simulated lake tem-
perature changes, (2) evaluate proxy biases, (3) and test whether simulated lake surface temperature changes
(the variable commonly reconstructed by proxies) track simulated air temperature changes. We find that the
PSM simulations highlight the importance of mixing in our interpretations of absolute temperature changes
in the past.

The Lake Sedimentary Archive PSM is built into existing, publicly available software in Python, PRoxy sYStem
Modeling (PRYSM), a framework for the design and user contribution of PSMs. The model constitutes an
open-source, comprehensive, globally applicable lake sedimentary archive PSM. The final product is dis-
tributed through Github (https://github.com/sylvia-dee/PRYSM). We introduce the concept of PSMs and
describe the details of our implementation of each of the Lake PSM’s submodels in section 2. To demonstrate
the viability of our approach, we apply the forward model to output from PMIP3 climate model simulations
at Lakes Tanganyika and Malawi in section 3, investigating uncertainties related to temperature reconstruc-
tions and mixing depths during the LGM. We evaluate temperature changes in reconstructions and coupled
climate models, the relationship between lake and air temperatures via proxy system modeling, and the accu-
racy of numerical model predictions of past African temperature changes. Finally, we discuss the relevance
of our findings for broad application in the paleoclimate community, caveats, and extensions of this work in
section 4.

2. Proxy System Modeling for Lacustrine Archives of Past Climate

Climate observations in lake sediments are influenced by multiple climatic variables including (but not limited
to) temperature, precipitation, humidity, wind speed, radiation at the surface, and the seasonality of these
variables. The multivariate nature of the climatic forcings on lake sedimentary archives necessitates transfer
models which simulate both the input climate and the processes that govern the proxy’s recording of that
climate signal. These transfer models, called PSMs, convert GCM simulations to pseudoproxy records, and are
now considered a fundamental step for robust data-model comparison (Dee et al., 2015; Harrison et al., 2015).

Our design of the lake PSM follows previous work (Dee et al., 2015; Evans et al., 2013) dividing the full model
into four main components of the proxy system response to climate forcing. Each component simulates a
separate modification of the primary climate signal as it is embedded in a proxy. First, an Environment Model
accounts for the impacts of the regional or local climatic drivers at the proxy measurement site; for lakes in
particular, this includes the energy balance and hydrology of the lake system. The Sensor Model describes the
physical, geochemical, and/or biological response of the proxy to the environment climate forcing, and the
Archive Model describes the emplacement or deposition of the sensor’s response to the environmental forcing
(in a layer of sediment or ice, for example). Finally, the Observation Model describes how measurements are
made on the archive and accounts for errors in dating/chronology, sampling, replication, and various analyti-
cal uncertainties. Following this framework, we extendPRYSM1.0 (Dee et al., 2015) with the addition of a PSM
for lacustrine sediments, branding the extension PRYSM2.0. The full PSM uses a lake energy and water bal-
ance model to drive the sensor, archive, and observation submodels in succession, described below. Finally,
the lake model uses Python, a widely used and supported open-source programming language in climate
data analysis and visualization. The full PSM produces GCM-simulated climate variables translated to proxy
units (e.g., 𝛿18OCARBONATE, 𝛿DWAX, and glycerol dialkyl glycerol tetraether [GDGT]) for direct comparison to the
measured temperature and hydroclimate records.

2.1. Environment: Hydrological, Isotopic and Energy Balance Submodel
The environment component of this PSM is a one-dimensional lake thermal and hydrological model originally
developed by Hostetler and Bartlein (1990, which gives full documentation). Hostetler (1991) incorporated the
more sophisticated lake ice model of Patterson and Hamblin (1988), and Hostetler and Benson (1994) added
the isotopic module. Small et al. (1999) made modifications to improve the ice model and other components,
including new parameterizations for sensible and latent heat flux from the Biosphere-Atmosphere Transfer
Scheme land surface model, a Crank-Nicholson numerical solution to improve simulation of temperature
changes by eddy diffusion, inclusion of the effects of salinity on water properties and evaporation, and imple-
mentation of a partial ice cover scheme. Lastly, Morrill et al. (2001) added subroutines to allow sigma-level
atmospheric model data as input. In our implementation, we additionally allow the user to specify the neu-
tral drag coefficient, depth-varying salinity, and albedos for melting and nonmelting snow to provide more
flexibility in lake-specific applications.
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The lake model requires seven input variables from either meteorological observations, reanalysis products,
or GCMs: near-surface air temperature, near-surface specific humidity, downward shortwave radiation, down-
ward longwave radiation, near-surface wind speed, precipitation, and surface pressure. For these variables,
the current model configuration uses monthly mean input data, but previous versions have been run with
daily or 6-hourly inputs, and the model time-step can be adapted depending on the user’s research needs. The
relative or specific humidity (q) is used to calculate the specific humidity gradient from lake surface to surface
air, which impacts the rate of evaporation. Runoff amounts are needed if the user wishes to simulate water
balance (i.e., lake levels over time). A full description of the lake level module is given in Hostetler and Benson
(1994) and Hostetler (2009), and it has been successfully applied across a wide range of climatic regimes (Li &
Morrill, 2013; Lowry & Morrill, 2018; Small et al., 1999; Vassiljev et al., 1998).

Runoff values may be obtained in a variety of different ways, including from observations (Hostetler, 2009),
full catchment streamflow models (e.g., Barth et al., 2016; Matsubara & Howard, 2009), and Budyko (1961) or
other rainfall-runoff scaling assumptions (Ibarra et al., 2018; Quade et al., 2018; Steinman et al., 2013). It is
also possible to use simulated lake evaporation from the environment model in conjunction with qualitative
runoff estimates to produce qualitative lake level information (Li & Morrill, 2013; Lowry & Morrill, 2018).

The water isotope balance module of the model requires inputs of isotope ratios (𝛿18O, 𝛿D) in precipita-
tion and runoff. These values may be taken from an isotope-enabled model or observations, when available
(e.g., WaterIsotopes.org; Bowen, 2009), or run using a simple site-specific calibration with temperature (see
READ.me; supporting information S1). The isotopic water balance scheme in the lake model is outlined in Ben-
son (1994), Hostetler and Benson (1994), and Benson and White (1994), with updates in the current version
of the model specific to Lake Tanganyika. Importantly, the water isotope ratios of the surface lake water are
used as inputs to the 𝛿18O of carbonate sensor model, described in section 2.2. The isotope-enabled model
inputs used for this iteration of the lake model are described in supporting information S1.

With the exception of the water isotope ratios and potential catchment data, the climatological input vari-
ables needed to run the lake environment model are readily available in reanalysis data (e.g., National Centers
for Environmental Prediction or ERA-Interim) and for nearly all of the Climate and Paleoclimate Model Inter-
comparison Project 3 (PMIP3) simulations at monthly resolution. A full list of inputs and outputs for the
Environment submodel is given in Table S1.

The environment model then calculates standard outputs from the surface energy balance, wind-driven tur-
bulent mixing using an eddy diffusion scheme, and density-driven convective mixing (Figure 1). Two output
files are generated from the model, surface.dat and profile.dat. The READ.ME (supporting infor-
mation S1) file details the content of these outputs (section S2.1), which in the current configuration include
lake surface temperature, mixing depth, evaporation, and water isotope ratios in the surface water.

We note that some lake-specific tuning of the environment model parameters may be necessary. A full
step-by-step guide for tuning the model for a given lake site, as well as justification for our parameter choices
for lake Tanganyika, can be found in section S4. In general, values for lake-specific parameters (e.g., depth,
salinity, and shortwave extinction coefficient) should be set using modern observations as much as possible.
Finally, given the necessity of de-biasing GCM output, we also employed the commonly used delta method to
generate climate inputs for paleo PSM simulations, which involves scaling modern observations or reanalysis
data by the paleo to modern change (𝛿) simulated by the GCM (e.g., Lorenz et al., 2016).

2.2. Sensor: Proxy Measurements in Lake Sediments
Lake sediments, like other paleoclimate archives, may commingle multiple sensors within one archive. Obser-
vations from lake sediments may include, but are not limited to, 𝛿18OCARBONATE, biomarkers and their isotopes,
GDGTs, lake level, diatoms, chironomids, ostracods, pollen, lithologic/geochemical measurements (varve
thickness, sediment composition, and carbonate precipitation), isotope ratios of carbon and nitrogen, isotope
ratios of bulk organic matter, tephras, and elemental abundances.

Focusing on primary climate variables (i.e., temperature and precipitation), historically, paleoecological prox-
ies such as pollen and chironomids have dominated this field, but newly developed proxies for air temperature
from lake sediments have employed organic and inorganic geochemical temperature proxies based upon
GDGTs including TEX86 and brGDGTs (Kraemer et al., 2015; Loomis et al., 2011, 2012; Powers et al., 2011;
Tierney et al., 2008; Tierney, Oppo, et al., 2010; Tierney & Tingley, 2015). Oxygen isotopes in carbonates
(𝛿18OCARB) have been used to reconstruct both lake water temperature and water balance, while others have
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Figure 1. Full Lake PSM Schematic. The lake PSM is composed of four submodels: environment, sensor, archive, and
observation, all of which utilize/produce unique inputs/outputs. The figure shows the components of the Lake PSM,
which is adaptable and modular by design to facilitate additions and modifications to any of the submodels included in
this version. Model inputs and outputs for the full lake PSM are given in Table S1. PSM = proxy system model;
GDGT = glycerol dialkyl glycerol tetraether.

measured proxies generally considered sensitive to precipitation amount such as the hydrogen isotopic com-
position of leaf waxes (𝛿DWAX; Costa et al., 2014; Feakins et al., 2014; Konecky et al., 2011; Russell et al., 2009,
2014; Tierney, Russell, & Huang, 2010). It is possible to build any number of sensor models appropriate for
inclusion in a comprehensive lake PSM. However, for this release of PRYSM2.0, we have included just three:
GDGTs, 𝛿DWAX, and 𝛿18OCARB. We plan to continue extending the sensor model’s functionality and readily
welcome additional contributions. We briefly describe each of the currently available sensor models here:

1. 𝛿DWAX

Lacustrine sediments capture and preserve epicuticular plant waxes (𝛿Dwax), from which the hydrogen iso-
topic composition (D/H) can be extracted. These hydrogen isotope ratios are widely used to reconstruct past
changes in both temperature and hydroclimate (Sachse et al., 2012 and references therein). These isotope
ratios are derived from hydrogen supply available for biosynthesis of plant wax compounds; these include
long-chain n-alkanes, n-alkanoic acids, and n-alkanols. The hydrogen supply itself is derived from environ-
mental water used by plants during growth. The leaf wax hydrogen isotope ratios capture the 𝛿D of the
source water, which depends on changes in local and regional hydroclimate (e.g., precipitation amount or
source). As a result, these proxies have been employed to reconstruct past changes in the global hydrological
cycle.
The sensor model is designed based on the theory presented in Sachse et al. (2012) and expanded in
Konecky et al. (2016) and accounts for plant-specific impacts such as differences between photosynthetic
pathway and leaf evaporation on biosynthetic fractionation. We specify an apparent biological fractionation
(𝜖) between the input 𝛿DWATER and 𝛿DWAX, following the methodology presented in Konecky et al. (2016). 𝛿D
ratios for the C29 n-alkane are subsequently calculated via precipitation 𝛿D time series, included in the input
files accompanying this model, and the corresponding apparent fractionation values (𝜖):

𝜖WAX−Pveg
= (fC3 ⋅ 𝜖C27.alk−PC3

) + (fC4 ⋅ 𝜖C27.alk−PC4
), (1)

where fC3 and fC4 are the fractions of C3 and C4 plants, respectively, and 𝜖C27.alk−PC 3 and 𝜖C27.alk−PC 4 are aver-
age apparent fractionation factors 𝜖WAX−P for the C27 n-alkane, and 𝜖alkane−acid is the average alkane-acid
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offset observed between C28 n-acid and C27 n-alkane in n-alkane biosynthesis (Konecky et al., 2016; Sachse
et al., 2012). Biological fractionation factors are subsampled from a distribution built based on observations
reported in Sachse et al. (2012), where 𝜖C27.alk−PC 3 = −112.8 ± 34.7‰ and 𝜖C27.alk−PC 4 = −124.5 ± 28.2‰;
these values represent the global average of 𝜖C29 measurements from all plant groups (Sachse et al., 2012).
A predicted value for 𝛿DWAX is then calculated by inverting equation (2) from Konecky et al. (2016) using
𝛿DPRECIP as an input:

𝛿DWAX = (𝛿DPRECIP + 1, 000) ⋅ (𝜖WAX−Pveg
∕1, 000 + 1.0) − 1, 000. (2)

To use the 𝛿DWAX sensor model, inputs from a water isotope-enabled atmospheric model to simulate water
isotope ratios in precipitation and soil water (if available) are required. If in situ measurements of precip-
itation isotopes are available (e.g., a proximal station of the Global Network of Isotopes in Precipitation;
IAEA/WMO, 2014), such inputs may also be used for a given lake site. The example input files published
alongside this work include monthly time series of 𝛿DPRECIP from the isotope-enabled atmospheric model
iCAM5 (Nusbaumer et al., 2017) over Tanganika.
This sensor model in its current configuration employs fixed values for 𝜖WAX−P ; while this configuration allows
us to predict variations in 𝛿DWAX resulting from changes in water isotopes in precipitation (𝛿Dprecip) alone, it
assumes that vegetation composition remains constant over time, which is not wholly realistic. More com-
plex leaf wax sensor models which take into account differences between vegetation types and 𝜖 values for
each plant functional type based on global vegetation distributions, as well as changes in land cover over
time, are forthcoming and will be incorporated into this version of PRYSM v2.0 upon publication.

2. 𝛿18OCARB

Many lake archives provide long, continuous records of past oxygen isotope ratios (𝛿18O), and these records
have been collected with considerable global coverage (Viau & Gajewski, 2001). Oxygen isotopes can be
measured in a number of proxy media including diatoms and cellulose but especially in carbonates such
as ostrocods, gastropods, and bulk sedimentary carbonates (𝛿18OCARB). 𝛿18OCARB varies as a function of lake
water temperature and isotope ratios (Dean et al., 2018; Jones et al., 2005), yielding insight to changes in
both local air temperatures and the hydrological cycle (e.g., balance of precipitation minus evaporation)
over time (Jones et al., 2005; Leng & Marshall, 2004). Through the use of an isotope mass balance model
such as the scheme employed in the enviroment submodel, the specific thermodynamic versus hydrological
controls on the 𝛿18OCARB can be better diagnosed.
The 𝛿18OCARB in lake surface water can be modeled as a function of the isotope ratios in lake water and
temperature-dependent fractionation, which depends on the calcium carbonate type precipitated. The car-
bonate isotope sensor model directly computes the proxy observation (𝛿18OCARB) from the output of the
environment model: simulated water isotopes and temperature. The transfer function for 𝛿18OCARB can be
modified by the user and includes the unit conversion from Vienna Pee Dee Belemnite to Vienna Standard
Mean Ocean Water, as well as the temperature-dependent fractionation between 𝛿18OWATER and carbonate:

𝛿18OCARB = 𝛿w + 21.9 −
√

21.9 ⋅ 21.9 − 10 ⋅ (16.9 − T) (3)

𝛿w = 𝛿18Ow − 0.2, (4)

(O’Neil et al., 1969),

𝛿18OCARB = 𝛿w + 25.8 −
√

25.8 ⋅ 25.8 − 11.1 ⋅ (16.1 − T) (5)

𝛿w = 𝛿18Ow − 0.27, (6)

(Kim & O’Neil, 1997),

𝛿18OCARB = 𝛿w + 25.8 −
√

25.8 ⋅ 25.8 − 11.1 ⋅ (16.1 − T) (7)

𝛿w = 𝛿18Ow − 0.22, (8)

(Erez & Luz, 1983),
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𝛿18OCARB = 𝛿w + (13.2 − T)∕4.89 (9)

𝛿w = 𝛿18Ow − 0.27, (10)

(Bemis et al., 1998),
where T is lake surface temperature, 𝛿w is the Vienna Standard Mean Ocean Water correction for 𝛿18OWATER,
and 𝛿18Ow is the oxygen isotope composition of the surface lake water.
Importantly, the 𝛿18OCARB sensor model should only be used in the current version of the PSM framework if
the water balance and isotope mass balance modules of the environment model are turned on to properly
model 𝛿18OLAKE.

3. TEX86 and (br)GDGT
The sensor model includes transfer functions for TEX86 or the TetraEther indeX of 86 carbons proxy for marine
and lacustrine temperatures. TEX86 is used as a proxy for marine and lacustrine temperatures. It is defined to
quantify the degree of cyclization of isoprenoidal GDGTs (iso-GDGTs) produced by Archaea (Schouten et al.,
2002). Second, branched GDGTs (brGDGTs) are produced by bacteria and are preserved in a range of natural
archives. Weijers et al. (2007) was first to show their degree of cyclization and methylation (quantified by the
Methylation of Branched Tetraether – MBT – and the Cyclisation of Branched Tetraether – CBT – indices,
respectively) correlate to temperature in soils. More recently, these compounds have been shown to capture
changes in mean annual air temperatures (MAAT) based on changes in the fractional abundances of a set
of 14 brGDGTs (De Jonge et al., 2014; Russell et al., 2018).
The sensor model acquires temperatures at different depths and seasons from the environment model
and treats these temperatures as a proxy signal. If a direct transfer function relating temperature
to GDGTs is available for a given site or region, it can be specified as the parameter 𝛽 in function
lake_sensor_gdgt.py. For the purposes of demonstration, a number of potential calibration values
for 𝛽 are listed based on values used by Powers et al. (2011) and Loomis et al. (2017).
The temperature-TEX86 relationship is inverted to yield a forward estimate of the proxy measurement:

TEX86 = 𝛽 ∗ LST , (11)

TEX86 = (LST + 14.0)∕55.0, [Powers et al., 2011] (12)

TEX86 = (LST + 10.92)∕54.88, [Loomis et al., 2017] (13)

where LST is lake surface temperature, and 𝛽 is the proxy/temperature transfer function or calibration set
by the user.
Recent calibration studies have developed calibrations for brGDGTs in lakes with mean annual temperatures
based upon a version of the MBT index which use only 5-methyl isomers (MBT ′

5ME). These compounds in
particular have been shown to correlate with MAAT (e.g., De Jonge et al., 2014; Russell et al., 2018).

MBT ′
5ME = (MAAT + 1.21)∕32.42, [Russell et al., 2018], (14)

MBT ′
5ME = (MAAT + 8.57)∕31.45, [De Jonge et al., 2014]. (15)

As mentioned above, the GDGT component of the sensor model is modular such that the user may specify
which calibration to use based on recent publications or can specify their own value for 𝛽 . Additional cali-
bration options will be added to the submodel as they are published. An example of the GDGT sensor model
output is given in Figure 4.

2.3. Archive Model: Sedimentation, Bioturbation, and Compaction
The archive submodel simulates sedimentary processes that affect the emplacement of the sensors in sedi-
ments, namely, variations in sedimentation rate, accumulation, compaction (e.g., Huybers & Wunsch, 2004),
and bioturbation (Trauth, 1998, 2013). These processes smooth the reconstructed climate signal (see Figure 5,
orange/red line). These effects are likely small in low-resolution, centennial-scale analyses in lake sediment
measurements, but the ability to quantify the effects of these uncertainties is nevertheless important, espe-
cially for high-resolution sedimentary archives. The bioturbation model is validated in section 3.1 (and see
Figure 5).
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Figure 2. Sediment compaction: Porosity profile + sedimentation. The lake archive subroutine simulates sediment
compaction via a simple correction for the porosity of the sediment. (a) Porosity profile in simulated sediment core
spanning the last 21 kyr. (b) Original, noncompacted sediment assuming a sedimentation rate of 100 cm/kyr (blue) and
compacted sediment via porosity calculation.

We model bioturbation using an adapted version of the TURBO2 parameterization described in Trauth (2013).
Bioturbation and mixing in the sediment can distort the sensor proxy measurements in time. To account for
this, the bioturbation module of the archive model takes the original ages, abundances, isotope or geochem-
ical measurement (sensor model output), and number of carriers and computes a bioturbated version of the
proxy data. The bioturbation model (function lake.archive.bioturb.py) takes four inputs, including
age starting with the oldest layer, mixed layer thickness in centimeters, species abundance (for all intents and
purposes, this is a constant and is set to 200 by default, and see supporting information S1 for additional infor-
mation), and proxy signal (isotope, GDGT, etc.). Bioturbation effectively smoothes the input climate signal,
which can reduce variance in the measured signal and alter the shape of the resulting power spectrum (Dee
et al., 2015, 2017).

The sediments and the sensors within them are compacted via a correction using the porosity profile
(Figure 2a). The initial porosity (𝜙) is user-specified but typically ranges from values of 0.6 to 0.99 for lake
sediments (e.g., Crusius & Anderson, 1991). We calculate the porosity profile via Bahr et al. (2001):

𝜙z =
e−cg(𝜌s−𝜌w )z

e−cg(𝜌s−𝜌w )z + k1
, (16)

where 𝜙 is porosity at depth z, g is gravity, k1 = (1 − 𝜙0)∕𝜙0, c is an empirical constant depending on defor-
mation, and 𝜌 is the density of quartz (s) and water (w). The final compacted age-depth model is extracted
from the porosity-corrected depth series (Figure 2b) via

h′ = h ⋅ (1 − 𝜙0)∕(1 − 𝜙), (17)

where 𝜙0 is the initial porosity (0.95 in this example), h is the original sediment height-depth scale, and h′ is
the final compacted depth scale (red line in Figure 2. The archive model inputs include sedimentation rate,
porosity of sediment, and the output of the sensor model (i.e., the pseudoproxy time series) and return a
bioturbated, compacted age-depth series (Table S1).

2.4. Observation Model and Dating Uncertainties
Lake sediments are generally dated via chronologies anchored by radiometric or other discrete age control
points, which are subsequently used to generate an age-depth relationship. The observation submodel allows
us to assess the impacts of both analytical and age uncertainties, the latter of which is often generated with
age assignments by tie points in these sediments. Indeed, sedimentary observations house significant age
uncertainties, the confounding effects of which have been highlighted and/or modeled in previous work
(e.g., Blaauw & Christen, 2011; Bronk-Ramsey, 2009; Burgess & Wright, 2003; Klauenberg et al., 2011; Parnell
et al., 2011; Ramsey, 2008). Dating uncertainty is crucial for robust comparisons with GCMs or for climate
reconstruction in general, and PRYSM incorporates a number of age modeling tools (see Dee et al., 2015).
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Table 1
Comparison Between Observations From Lake Tanganyika Versus Lake Proxy System Model Simulated Conditions, Forcing the
Lake Model With ERA-Interim Reanalysis Data for the Region

Climate/lake variable Observed wet season Modeled wet season Observed dry season Modeled dry season

Surface temperature (∘C) 27.8 ± 0.7 28.5 25.8 ± 0.9 25.0 ± 0.7

Evaporation (mm/day) 3 4 6 4

Mixing depth (m) 50± 10 30 80±10 85

Note. Available in situ observations spanning the last few decades for Lake Tanganyika include surface temperature,
evaporation, and mixing depths.

Modeling uncertainties in tie-point chronologies are necessitated by errors in our constraints on timing of
events, rates of change, and stratigraphic correlations, all of which can be generated due to errors in radiocar-
bon calibration and interpolation (Dee et al., 2015). Many of these issues are addressed in previous work (e.g.,
Blaauw, 2010; Blaauw & Christen, 2011; Breitenbach et al., 2012; Bronk Ramsey, 1995; Haslett & Parnell, 2008;
Parnell et al., 2011). PRYSM uses Bchron (Haslett & Parnell, 2008) to generate ensembles of chronologies, for
its open-source compatibility with R and Python, and flexibility with a variety of tie-point chronologies. The
full documentation forBchron can be found in Haslett and Parnell (2008); briefly, it uses a Markov monotone
stochastic process to generate pathways between user-input ages, the result being an ensemble of age-depth
realizations. Bchron is also well-suited to the lake PSM as it was initially developed to assess radiocarbon
(14C) dating uncertainties.

Using Bchron, we explicitly simulate an ensemble of plausible age models for records including dating uncer-
tainties. An example of the output from Bchron applied to Lake Tanganyika is discussed and validated in
section 3.1 (Figure 6). The user-specified inputs for Bchron (Table S1) include the total length of core in cen-
timeters, the age estimates at each tie point, standard error on the ages, the positions in the core, calibration
curves, and an array of depth values where the user would like predicted ages in the output. Finally, Bchron
requires the topmost age of the core, in years B.P. (1950 = 0 BP). The full observation model also includes proxy
error from the combined analytical uncertainties in the measurement and calibration uncertainty. These ana-
lytical uncertainties are estimated through a Gaussian white noise function with user-specified analytical error
(e.g., 𝜎 = ±0.1‰).

3. Applications: Model Validation and LGM Temperatures in African Rift Lakes
3.1. Model Validation and Tuning
We compared present-day simulations against available modern observations of temperature profiles from
Lakes Malawi and Tanganyika (Descy et al., 2006; Plisnier et al., 1999), given in Table 1. Results from the simu-
lations of both lake systems were largely comparable for LGM minus present-day conditions, so we focus our
discussion here on results from Lake Tanganyika. The model was tuned to maximize agreement with available
observations. For example, initial simulations of mixing depths in Lake Tanganyika forced by modern cli-
mate variables from the Paleoclimate Model Intercomparison Project (PMIP3) models (Braconnot et al., 2012;
Meinshausen et al., 2011) were slightly too shallow compared to observations (O’reilly et al., 2003; Verburg &
Hecky, 2003), partly due to the mixing scheme. We achieved a better fit of modeled to observed mixing depth
using ERA-Interim reanalysis climate data (Dee et al., 2011) as input and by adjusting the neutral drag coef-
ficient (CDRN), as recommended by Subin et al. (2012) for large lakes. Specifically, CDRN value was increased
to a value of 2.0E − 3 to achieve reasonable dry season mixing depths and evaporation rates. For larger lakes,
these higher values of CDRN are closer to those observed in the literature for land surface roughness (Garratt,
1977). The resulting simulations forced with ERA-Interim reanalysis (1979–2016; Dee et al., 2011) show strong
agreement with the annual cycles of lake surface temperature, evaporation, and mixed layer depth of Lake
Tanganyika (Table 1 and Figure 3).

Extending this, we applied the TEX86 sensor model to the output from the environment submodel for Lake
Tanganyika over the modern period, 1979–2016. Figure 4 shows example output from the sensor model. The
predicted TEX86 values are calculated via the calibration in Powers et al. (2011). For reference, the calibration
error represented by the gray window in Figure 4 corresponds to a temperature error of approximately 2.5 ∘C
(Powers et al., 2011). Note that our simulation yields an increasing trend in TEX86 (y axis inverted in Figure 4),
in agreement with core-top observations reported in Tierney, Mayes, et al. (2010). The sensor model simulates
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Figure 3. Environment model output at Lake Tanganyika using ERA-Interim Reanalysis input to the proxy system model.
The lake energy balance subroutine simulates (a) temperature profile with depth, (b) seasonal cycle of lake surface
temperatures, (c) mixing depth, and (d) evaporation rates (see Table 1).

TEX86 ranging from∼0.73 to 0.75; for reference, Tierney, Mayes, et al. (2010) report TEX86 values of 0.733, 0.749,
and 0.752 in 1976, 1986, and 1996, respectively, using the Powers et al. (2010) calibration for Lake Tanganyika.

Figure 4. Sensor model output. TEX86 predicted from lake surface
temperatures, using the inverted calibrations given in Powers et al. (2011)
and Loomis et al. (2017; light blue and navy, respectively), with reported
calibration errors. The environment model is driven with ERA-interim
reanalysis data spanning 1980–2015.

Robust agreement between the the PSM-simulated proxy data and mod-
ern observations confirms the lake energy balance model faithfully simu-
lates lake surface water temperatures.

The lake PSM sensor model is useful for identifying individual proxy biases.
For example, the sensor model can be driven using temperature changes
throughout the lake water column and across different seasons (e.g.,
these variables can be used as inputs from the environment model). Tem-
peratures at specific depths or during specific seasons may best fit the
observational data, isolating potential proxy system biases.

For demonstration of the bioturbation component of the lake archive sub-
model, Figure 5 shows the original TEX86 output from the lake sensor
model with two possible realizations of the time series given a 4-cm-mixed
layer width in the sediment. The figure highlights two important features
of the signal loss imparted by the bioturbation scheme: (1) bioturbation
tends to reduce the variance from the original predicted TEX86, smooth-
ing the original climate input signal, and (2) the bioturbated signal may
shift peaks in the original data time series, creating errors in interpreta-
tion of absolute maxima/minima in the measured proxy signal. Examining
Figure 5, the realizations from TURBO2 in red and yellow shift the local
maxima of the original data occurring in 1985 and 1989 by 1–2 years.
For deeper bioturbation length scales, that is, if bioturbation typically
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Figure 5. Archive validation. Simulated bioturbation of sensors (TEX86 in this
case) using TURBO2 in Python. The figure shows TEX86 in Carriers 1 + 2,
4.0-cm-mixed layer, with 10 carriers. Bioturbated time series for two different
elemental abundances/carriers (red, orange lines) with original (blue) with
the TEX86 calibration error included (grey-shaded window).

occurs in the sediment over 20 versus 5 cm, we expect a larger smooth-
ing effect on the initial climate signal, which may incur much larger
errors. In terms of site-specific validation of the bioturbation model, we
note here that in the original publication of this data, the core con-
sisted of fine, sub-millimeter scale laminations and was not bioturbated;
thus, the application of the bioturbation is for demonstration only and
actually oversmoothes the results relative to measurements. However,
TURBO2 has been successfully used to simulate the impacts of bioturba-
tion and improve model-data comparison in publications investigating
both marine and lacustrine sites (e.g., Tierney et al., 2017; Thirumalai et al.,
2018; Trauth, 1998, 2013).

Finally, we used Bchron to demonstrate the functionality of the obser-
vation submodel for Tanganyika. Figure 6 shows the series of calibrated
radiocarbon dates (14C ) reported in Tierney et al. (2008; black triangles).
The observation model yields an ensemble of 1,000 plausible chronolo-
gies (gray window) for a series of calibrated radiocarbon dates. Each of
the 1,000 chronologies can be used to then quantify dating uncertainties
across different horizons in the sediment core. For example, a user might
extract the ensemble chronology data and test for maximum correlation
with insolation or greenhouse gas forcing at a given site to isolate the age
model ensemble member that maximizes agreement with climate forcing
data or with other proximal paleoclimate records.

Figures 3–6 illustrate the utility of the submodel framework in the PSM through application to Lake Tan-
ganyika. Each submodel (environment, sensor, archive, and observation) yields unique output, helping to
quantify individual contributions of the full lake system to the final measured signal. For example, a user can
quantify the change in measured climate variance from the original input signal to a signal that includes cal-
ibration uncertainties applied in the sensor model for GDGTs. This variance reduction could be subsequently
compared to the change in variance in the proxy measurements due to bioturbation alone. While the uncer-
tainty application occurs and is a part of the model output for each section of the lake model, the errors are
additive and can be analyzed alone or en masse in the final output. In this way, the PSM submodels help

Figure 6. Observation model: BChron. Bchron-simulated chronologies (last
glacial maximum–present) for Lake Tanganyika. The observation model
yields an ensemble of 1,000 plausible chronologies (gray window) for a
series of calibrated radiocarbon dates. The figure shows the output of
Bchron using the C-14 ages and calibrations for Tanganyika TEX86 published
in Tierney et al. (2008).

identify where and how uncertainties are imparted and subsequently
propagated through the PSM, filtering the input climate signal (Dee
et al., 2015).

3.2. African Lake Temperatures During the LGM
Approximately 21,000 years ago, during the LGM, temperatures are esti-
mated to have been between 3 and 5 ∘C colder globally as a result of low
greenhouse gas concentrations (185 ppmv) and northern hemisphere ice
sheet extent (Braconnot et al., 2012). The LGM thus provides an apt test
bed for model simulations due to large and well-constrained temperature
changes forced by greenhouse gas changes; it provides a different equi-
librium climate state with which to compare model simulations (Hopcroft
& Valdes, 2015). A number of proxy-model comparison studies have
focused attention on the LGM (Braconnot et al., 2007; Chevalier et al., 2017;
Harrison, 2000; Harrison et al., 2015; Pinot et al., 1999, and many others)
but also on deeper time slices (e.g., the Miocene, Eocene, and Cretaceous;
e.g., Huber & Caballero, 2011; Huber & Sloan, 2001; Poulsen et al., 1999,
2003; You et al., 2009). Such studies have compared temperature recon-
structions, mostly derived from sea surface temperatures proxies and fossil
leaves/pollen, to climate model simulations. In general, comparing avail-
able temperature reconstructions to climate model simulations with vastly
different boundary conditions provides a unique test of model physics.

However, until recently, very few temperature reconstructions from tropi-
cal continents were available to assess model performance (Bartlein et al.,
2011; Bonnefille et al., 1990; Chalie, 1995; Mark et al., 2005; Waelbroeck
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Figure 7. Air and lake surface temperatures at Lake Tanganyika, last glacial maximum (colored lines), and historical
(black dotted line). (a) Simulated air temperature, climatological average, for six PMIP3 models with LGM simulations.
(b) Simulated lake surface temperature, climatological averages, for 6 PMIP3 models with historical simulations. Using
the PMIP3 air temperatures along with other environment model inputs, the lake proxy system model environment
model simulates lake surface temperature climatologies at the last glacial maximum. The black-dotted line shows the
comparison with historical (present day) temperatures, and each colored line represents a different PMIP3 model
ensemble member. PMIP3 = Paleoclimate Modeling Intercomparison Project; PSM = proxy system model; LGM = last
glacial maximum; HIST = historical.

et al., 2009). The recent application of GDGT-based analyses in tropical and subtropical lacustrine archives has
changed that, adding much-needed data from the tropics to global databases of temperature changes from
LGM to present (Loomis et al., 2011, 2017; Morrissey et al., 2018; Powers et al., 2005; Tierney et al., 2008). Com-
plicating these data-model comparisons, however, is the fact that GDGT-based temperature proxies respond
to lake (and not air) temperatures, creating uncertainty in the drivers of observed temperature changes and
our methodology for assessing records alongside GCMs.

For example, recent analyses indicate that air-lake temperature relationships may be nonstationary (e.g., Hren
& Sheldon, 2012; Kraemer et al., 2015) and depend on depth in the water column of GDGT production, both

Figure 8. Simulated mixed layer depth, Lake Tanganyika, LGM, and
historical. Simulated mixed layer depth (environment submodel),
climatological average, for six PMIP3 models with LGM simulations
compared to historical. The black-dotted line shows the comparison with
historical (present day) temperatures, and each colored line represents a
different PMIP3 model ensemble member. LGM =last glacial maximum.

of which are poorly constrained in lacustrine environments. Kraemer et al.
(2015) identified offsets between historical changes in lake surface tem-
perature and TEX86 estimates in Lake Tanganyika and attribute the discrep-
ancy to changes in mixed layer depth affecting GDGT producers at the
thermocline. Yet sediment trap and water column analyses of GDGTs in
Lake Tanganyika and Challa, East Africa, suggest that although production
of GDGTs is the highest in the thermocline and hypolimnion, most sed-
imentary GDGTs are derived from production in the surface mixed layer
and thermocline, due to packaging of GDGTs in rapidly sinking large sed-
iment particles from grazing organisms (Buckles et al., 2014; Schouten
et al., 2012). Further, in some cases, changing lake mixing can amplify
air temperature changes, whereas in other lakes, temperatures may be
damped compared to air temperature changes due to downward mixing
of heat and the high specific heat capacity of water. These uncertain-
ties motivate the following research questions: (1) are lake temperatures
recording air temperature changes, and do lake and air temperatures dif-
fer in their relative means and patterns of change through time? and (2) is
this relationship stationary?

Here we investigate changes in lake surface temperature, air temperature,
and mixing depth in two lakes, Malawi and Tanganyika, from which the
longest temperature records from the African continent have been pro-
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Figure 9. Differences in air temperatures and lake temperatures from the LGM to present, simulations for Tanganyika
and Malawi. Tanganyika (a–c) and Malawi (d–f ). (a and d) Differences between air and lake temperature through time:
the red dot represents the mean value of the air-lake temperature difference over the historical period in ERA-Interim
reanalysis and the resulting lake model simulation, and the box plots show the mean, interquartile range, and 95%
confidence intervals for simulated temperatures. Each box plot shows shows the air-lake temperature difference for all
of the PMIP3 model simulations at the LGM. This suggests the offset between lake and air temperatures is not stable in
time. (b and e) LGM minus HIST difference in air and lake temperatures, PMIP3 model simulation spread represented by
box plots. Lake temperature differences (LGM–present) are approximately 1 ∘C less than air temperature changes.
(c and f) Same as (b) and (e) but for the GISS-PMIP3 LGM simulation only. ΔTAIR−LAKE refers to the difference between
lake and air temperatures in a given time slice (LGM, historical). ΔT − LAKELGM−HIST refers to the change in simulated
lake surface temperatures, LGM minus historical. ΔT − AIRLGM−HIST is the change in simulated air temperatures in PMIP3
models, LGM minus historical (note cooler temperatures at LGM in all cases). ΔTAIR versus ΔTLAKE is the difference
between (LGM minus historical) temperature changes in simulated air temperatures compared to simulated changes in
lake temperature. This value indicates that the absolute changes in air temperatures are offset from lake temperature
changes by almost a degree. PMIP3 = Paleoclimate Modeling Intercomparison Project; LGM = last glacial maximum.

duced (Johnson et al., 2016; Powers et al., 2005; Tierney et al., 2008). The lake PSM allows us to explicitly link
and test the impact of the lake system on modeled LGM temperatures, in particular to check whether lake
temperatures and air temperature changes are comparable during the LGM and in the present. To date there
has been little attempt to examine biases in the temperature proxies introduced by internal lake dynamics, in
particular the energy transfers required to produce the observed temperature changes. As mentioned above,
this is crucial as the proxy sensors modeled in this study are sensitive to lake temperature rather than the
primary variable of interest: air temperature.

Our PSM environment model allows us to examine the surface energy fluxes that cause lake temperature vari-
ations in the past (e.g., latent heat losses related to humidity and winds, short and long wave radiation changes
driven by orbital and greenhouse gas variation, and lake mixing). Importantly, we focus on output from the
environment model only, given that the relationship in question is offsets between air temperature and lake
temperature and the coevolution of those two variables. Since the conversion to proxy units uses a linear
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Table 2
Results From LGM Lake and Air Temperature Application: Tanganyika and Malawi
Lake Surface Temperatures Compared to Air Temperatures, LGM, and Historical

Temperature simulation/change Tanganyika Malawi

LGM ΔTAIR−LAKE (C) −5.9 −3.8

HIST ΔTAIR−LAKE (C) −5.0 −2.7

PMIP3 ΔT − LAKELGM−HIST −2.7 −1.9

PMIP3 ΔT − AIRLGM−HIST −3.6 −3.1

GISS ΔT − LAKELGM−HIST −3.8 −0.97

GISS ΔT − AIRLGM−HIST −4.7 −2.5

PMIP3 ΔTAIR versus ΔTLAKE 0.9 1.1

GISS ΔTAIR versus ΔTLAKE 0.9 1.5

Note. (top two rows) ΔTAIR−LAKE refers to the difference between lake and air
temperatures in a given time slice (LGM, historical). (middle four rows) ΔT −
LAKELGM−HIST refers to the change in simulated lake surface temperatures,
LGM minus historical. Similarly, ΔT − AIRLGM−HIST is the change in simulated
air temperatures in PMIP3 models, LGM minus historical (note cooler temper-
atures at LGM in all cases). Finally, the bottom two rows of the table show
ΔTAIR versus ΔTLAKE, which is the difference between (LGM minus historical)
temperature changes in simulated air temperatures compared to simulated
changes in lake temperature. This value indicates that the absolute changes in
air temperatures are offset from lake temperature changes by almost a degree.
LGM = last glacial maximum; PMIP3 = Paleoclimate Modeling Intercomparison
Project 3.

scaling, we do not expect the impacts of the sensor model will impact the result as strongly as lake surface
energy balance. Further, because we are comparing average LGM time-slice values, we ignore impacts of sed-
imentation, bioturbation, and dating uncertainties, which likely impart uncertainty on shorter (multidecadal)
timescales.

Simulated air temperatures and lake surface temperatures at the LGM compared to the historical period are
shown in Figure 7. Figure 7a indicates GISS is the coldest model during the LGM at Tanganyika and MIROC the
warmest. All models agree on the trends in the seasonal cycle for air temperatures, with hot JJASON temper-
atures and cooler DJFMAM temperatures. Interestingly, the sharp trends in the air temperature seasonal cycle
are attenuated by the lake energy balance model (Figure 7b), such that warmest lake surface temperatures
actually occur in NDJFM and coldest lake surface temperatures occur in JJAS. In agreement with previous
studies, the energy balance model simulates maximum heat uptake in Tanganyika during SON (Tierney et al.,
2011).

Evaluating the full PMIP3 model spread and resulting lake model simulations, a number of important obser-
vations arise. First, large changes in lake mixing depth during the LGM may partially account for differences
in the amplitudes of LGM temperatures in proxy and model data. Figure 8 shows changes in the depth of the
mixed layer at the LGM compared to historical simulations. While most of the PMIP3 simulations do not show
a significant change in mixing depths, the coldest simulation in terms of both air temperature and lake sur-
face temperatures (GISS, see orange line, Figure 7) shows a deepening of ∼100 m. This is a large change, given
the mean depth of the lake is 570 m. These changes in mixing depth (in GISS in particular) are partially driven
by higher wind speed and reduced relative humidity at the lake surface, as lower humidity promotes higher
rates of evaporation, evaporative cooling, and deeper mixing (see Figure 8).

Second, evaluation of lake surface temperatures and their relationship with model-simulated air temperature
reveals nonstationarity in both (1) the air-lake temperature difference and (2) the change in air tempera-
tures (LGM–present) versus the change in lake temperatures. Figure 9 shows changes for both Tanganyika
(Figures 9a–9c) and Malawi (Figures 9d–9f ), and these changes are summarized in Table 2. For (1), Figures 9a
and 9d show that the differences between air and lake surface temperature for Tanganyika and Malawi
exhibit larger offsets at the LGM (for Tanganyika, TAIR−LAKE = −5.6 to −7.5 ∘C) versus the historical period
(TAIR−LAKE = −5.0 ∘C). For Lake Malawi, the offset is similar, and the air-lake offset is about 1∘ larger at the
LGM. Lake temperatures are systematically warmer than air temperatures, similar to observations for Lakes
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Tanganyika and Malawi (in agreement with, e.g., Kraemer et al., 2015; Tierney et al., 2008). Moreover, lake tem-
perature proxy archives are sensitive to lake surface temperature changes, which are potentially damped by
the lake system relative to air temperature change: Figures 9b and 9c show that TAIR−LGM − TAIR−HIST in the
PMIP3 ensemble differ by 0.9 ∘C, and looking at GISS alone (the coldest model simulation at the LGM), the
difference in air temperature (LGM–present) is −5 ∘C. However, the total change in lake surface temperatures
(LGM–present) is about a degree less (∼4 ∘C). Comparing these changes in absolute temperature to observa-
tions, GDGT-based reconstructions from Lake Tanganyika show a 4 ∘C warming from the LGM to preindustrial
(22.5 to 26.5 ∘C; Powers et al., 2011). For Malawi, Figures 9e and 9f demonstrate similar trends to the Tanganyika
data and show the lake system damping the total air temperature changes by approximately∼1 ∘C. Our results
suggest that the change in absolute temperature observed in lake surface temperature reconstructions is
potentially damped compared to simulated (and actual) air temperature changes.

These tests highlight the importance of dynamical processes such as mixing in our interpretations of absolute
temperature changes. Further, we note the potential complication that lake temperature proxies may have a
nonstationary relationship with air temperature across large mean state changes in climate and, in general,
may underestimate the air temperature change. However, this result is contingent on the selection of one of
the more cold, dry, and windy PMIP3 simulations of the LGM (e.g., GISS).

4. Conclusions

Globally distributed lake temperature reconstructions provide crucial information relevant to climate pre-
diction; such records yield statistics on the rates and magnitudes of temperature changes as recorded by
paleoclimate archives, which inform our evaluation of temperature variability in models. However, pale-
oclimate archives often record climate in a multivariate and nonlinear manner, obfuscating the original
climate variable of interest (e.g., temperature or precipitation). To this end, this work has developed a flexi-
ble, open-source PSM for lacustrine paleoclimate archives. The model includes an environment lake energy
balance and vertical mixing model used to evaluate changes in lake temperature and mixing depth through
time, as well as the fidelity of proxy estimates of air temperature versus lake surface temperature. It also
simulates the response of various sensors in the lake, including 𝛿D of leaf waxes, carbonate 𝛿18O, and
GDGT-based temperature responses. Finally, the model explicitly simulates postdepositional processes that
alter the final measured archive signal, including sedimentation, bioturbation, compaction, and uncertainties
in the observation made on the measurement, including dating and analytical uncertainties.

Ultimately, the PSM output consists of a suite of pseudoproxy time series that first propagate uncertainty from
the observed spread in GCM ensemble members through the lake temperature and mixing (environment)
model. Mean annual lake surface temperature, season-specific lake temperatures, and lake temperatures at
varying depths (with GCM ensemble spread) drive sensor, archive, and observation models, generating pseu-
doproxy time series that produce proxy calibration and analytical error, bioturbation, and compaction and
age errors from an ensemble of plausible sediment core chronologies. All individual sources of uncertainty
(lake-specific parameters, climate input fields, sediment processes, and age model uncertainties) ultimately
compound and yield an uncertainty range in the final PSM output that allow for more robust comparisons
with the lake temperature reconstructions in proxy units. Unique to the PSM framework, the individual
contribution of each source of uncertainty can be tracked and quantified (section 3.1).

In addition, the lake PSM facilitates a robust characterization of the uncertainties applied to proxy measure-
ments in a piecewise manner, such that the individual impacts of calibration uncertainty or age model error,
for example, can be quantified. In future applications of this lake PSM, we hope to perform a more complete
analysis of how uncertainties from each submodel (1) affect the input climate signal individually, but impor-
tantly, (2) interfere, whether constructively or destructively, with our interpretation of the variance contained
in the input climate signal of interest.

The lake PSM thus improves our interpretation of past climate in lacustrine archives, helping users investigate
the sensitivity of various proxy types to climatic changes. What percent change in precipitation is needed
to simulate a 150-cm change in lake level over 100 years? How much do lake surface temperatures need to
change to obtain a shift of 2% in carbonate 𝛿18O? These and other questions are readily answered with the
lake PSM presented in this work.

To demonstrate the utility of the lake PSM for advancing data-model comparisons, we investigated
African temperature changes in current-generation PMIP3 simulations of the LGM and the historical period
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(section 3.2). Environmental variables from PMIP3 simulations were used to drive the lake PSM at Malawi and
Tanganyika to compare the behavior of means, seasonality, and depth variations in lake temperature and their
relationship to air temperature over the 20th century using ERA-Interim Reanalysis products (Dee et al., 2011).
These comparisons highlight confounding climatic influences on mixing depth and lake surface tempera-
ture, both which profoundly impact our understanding of how these lake systems respond to anthropogenic
warming. We find that lake temperatures are damped compared to air temperatures and that there may be
nonstationarity in mixing depths important for proxy interpretation. These results imply that lake tempera-
ture changes can originate from diverse forcings and that lake temperature changes may underestimate air
temperature changes.

We acknowledge important limitations of this work. While we have attempted to create a model that is as
adaptable and globally flexible as possible, the model does require many site-specific parameters and some-
what extensive user setup. The lake energy and water balance model in present form does not contain an
example catchment model that would aid in the correct simulation of runoff, which may hinder users looking
to accurately simulate changes in lake level; indeed, optimizing rainfall-runoff relationships and catchment
models in this PSM framework represents a much needed realm of model development. One can imagine
extensions of this publication of the PSM which incorporate options for more explicit catchment models
(e.g., Barth et al., 2016; Matsubara & Howard, 2009). Alternatively, simplistic rainfall-runoff scaling relationship
approaches (Budyko, 1961; Jakeman & Hornberger, 1993) may be appropriate (e.g., Ibarra et al., 2018; Quade
et al., 2018).

While lake sediments incorporate a great number of sensors, here we have only built sensor submodels for
three proxy types but hope to extend this functionality in the future, especially alongside forthcoming PSMs
for marine sedimentary archives in R (e.g., Dolman & Laepple, 2018). Finally, meteorological and/or climate
model data must be extracted for a given lake site to run the model; tools that facilitate extracting these
variables are published alongside the PSM code to aid users in obtaining these data and formatting it to lake
model input files.

Forthcoming work will seek to employ the full suite of updated PMIP4 simulations (Kageyama et al., 2018)
to evaluate whether changes observed in the African temperature reconstructions are consistent across
GCMs, time periods, and sites. We hope to further evaluate transient simulations of the last 21 ka against our
reconstructions to determine the sensitivity of African temperatures to individual climate forcings.

This model is a first step toward the development and distribution of a publicly available, fully operational
graphical user interface for lake sedimentary archives that will serve as a research tool for the paleoclimate
community. The addition of the lake PSM to the PRYSM framework provides a new computational platform
for the simulation of lake system archives and will establish standard practice for data-model comparison in
the limnological community. We envision adapting this version of the model to facilitate advances in in situ
and process-based studies involving lake systems and welcome contributions of additional sensor and archive
models to this platform via a GitHub repository (https://github.com/sylvia-dee/PRYSM). Much progress has
been made in the last several years in forward modeling for paleoclimatology to better understand archives,
manage uncertainties, and make more robust comparisons with the dynamical information contained in
state-of-the-art GCM simulations. We hope that this effort will stimulate collaborations between paleolim-
nologist data generators and climate modelers, jointly advancing knowledge of the drivers of major climate
changes in the past and future.
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